(2x+3)(2x-3)=4x^+5(2x-1)

Simple and best practice solution for (2x+3)(2x-3)=4x^+5(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+3)(2x-3)=4x^+5(2x-1) equation:



(2x+3)(2x-3)=4x^+5(2x-1)
We move all terms to the left:
(2x+3)(2x-3)-(4x^+5(2x-1))=0
We use the square of the difference formula
4x^2-(4x^+5(2x-1))-9=0
We calculate terms in parentheses: -(4x^+5(2x-1)), so:
4x^+5(2x-1)
We add all the numbers together, and all the variables
4x+5(2x-1)
We multiply parentheses
4x+10x-5
We add all the numbers together, and all the variables
14x-5
Back to the equation:
-(14x-5)
We get rid of parentheses
4x^2-14x+5-9=0
We add all the numbers together, and all the variables
4x^2-14x-4=0
a = 4; b = -14; c = -4;
Δ = b2-4ac
Δ = -142-4·4·(-4)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{65}}{2*4}=\frac{14-2\sqrt{65}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{65}}{2*4}=\frac{14+2\sqrt{65}}{8} $

See similar equations:

| 2-13x=6x+ | | (x-3)(x+3)=^-8(x-2) | | x3 | | 7(x+14)=70 | | 5x-0.6x^2+(5/(1+x))=0 | | X2-3x=340 | | 3-(2x-3)=0 | | 3/2×(-1+x)(5/2x+2)(1-3x)=0 | | 27-12x=0 | | 4(2-x)-8x=7(1-x) | | -17-6x=5x+27 | | 25+4x=-50 | | 14-x=54-9x | | 12y-12y=15-15 | | 〖3x〗^2=1/3 | | 〖5x〗^2=125 | | .2x-11=7x+4 | | .-4x+9x=45 | | 5(4x+3)=-3x-8 | | 10x^2+0.1-0.1x=0 | | 6.5x=8.5 | | 4z/7+8=-1 | | -4=2(x+90 | | 100⋅24x=15 | | 30=5(x+9) | | 9x2-12x-32=0 | | 6x-9x+9=19x+3610x-19 | | 9x+9=19x+36 | | 5x+17=x+17 | | 3n^2+n=310 | | 72y-3=25 | | 3*x^2+15*(x+4)=14*x*(x+4) |

Equations solver categories